Applying Particle Swarm Optimization to Adaptive Controller
نویسندگان
چکیده
A design for a model-free learning adaptive control (MFLAC) based on pseudo-gradient concepts and optimization procedure by particle swarm optimization (PSO) is presented in this paper. PSO is a method for optimizing hard numerical functions on metaphor of social behavior of flocks of birds and schools of fish. A swarm consists of individuals, called particles, which change their positions over time. Each particle represents a potential solution to the problem. In a PSO system, particles fly around in a multi-dimensional search space. During its flight each particle adjusts its position according to its own experience and the experience of its neighboring particles, making use of the best position encountered by itself and its neighbors. The performance of each particle is measured according to a pre-defined fitness function, which is related to the problem being solved. The PSO has been found to be robust and fast in solving non-linear, non-differentiable, multi-modal problems. Motivation for application of PSO approach is to overcome the limitation of the conventional MFLAC design, which cannot guarantee satisfactory control performance when the plant has different gains for the operational range when designed by trial-and-error by user. Numerical results of the MFLAC with particle swarm optimization for a nonlinear control valve are showed.
منابع مشابه
Designing an adaptive fuzzy control for robot manipulators using PSO
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...
متن کاملRobust Control of Power System Stabilizer Using World Cup Optimization Algorithm
In this paper, we propose a new optimized PID controller to stabilize the synchronous machine connected to an infinite bus. The model for the synchronous machine is 4-ordered linear Philips-Heffron synchronous machine. In this research, the parameters of the PID controller are optimally achieved by minimizing a definite fitness function to removes the unstable Eigen-value to the left side of im...
متن کاملRobust Control of Power System Stabilizer Using World Cup Optimization Algorithm
In this paper, we propose a new optimized PID controller to stabilize the synchronous machine connected to an infinite bus. The model for the synchronous machine is 4-ordered linear Philips-Heffron synchronous machine. In this research, the parameters of the PID controller are optimally achieved by minimizing a definite fitness function to removes the unstable Eigen-value to the left side of im...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملSynchronization of a Heart Delay Model with Using CPSO Algorithm in Presence of Unknown Parameters
Heart chaotic system and the ability of particle swarm optimization (PSO) method motivated us to benefit the method of chaotic particle swarm optimization (CPSO) to synchronize the heart three-oscillator model. It can be a suitable algorithm for strengthening the controller in presence of unknown parameters. In this paper we apply adaptive control (AC) on heart delay model, also examine the sys...
متن کاملEnhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کامل